
Section 7: Project 3 Intro
CSE 461 Computer Networks

Administrivia

● HW5 out, due next Thursday.

● Project 3 released, due on March 13th

○ This is a hard deadline!

● Final exam on March 8th!!!

Project 3: Bufferbloat

What is Bufferbloat?
From Wikipedia, “bufferbloat is a cause of high latency in packet-switched
networks caused by excess buffering of packets”

Queue

Project 3
- We will simulate bufferbloat on our mininet network, compare TCP Reno and

TCP BBR, and plot the latency and queue length graphs
- The setup is similar to project 2

- Mininet on the Vagrant VM
- Python3
- Given a skeleton code to modify. Don’t forget to check other files which

might contain useful helper functions

Project 3: Part 1
- Part 1: Topology Setup

- Similar to project 2 part 1
- Except need to specify link characteristics (bandwidth, minimum RTT,

max queue size)
- Look into Mininet documentation!

Project 3: Part 2 & 3
- Part 2: TCP Reno

- Modify
■ run.sh

A script that runs the experiment with specified parameters
● Run bufferbloat.py on q=20 and q=100
● Generate latency and queue length graphs

■ bufferbloat.py
Setup the mininet topology and the experiment

- Write shell commands to do the measurements

- Part 3: TCP BBR
- Modify Part 2 to run the experiment using BBR

The Experiment
Complete bufferbloat.py to run the following in parallel
● Long-lived TCP flow between h1 and h2 (iperf/iperf3)

○ Fills bottleneck router

● Ping train between h1 and h2
○ Measure latency between hosts

● Measure time to `curl` down webpage from h1

Goal: See how queue size behaves under congestion, and how that affects
latency/download times

Long-lived TCP Flow
● Starter code sets up iperf server on h2

● Goal: start iperf client on h1, connect to h2
○ Should be “long-lasting”, i.e. for time specified by --time parameter

● How do I connect to a certain IP or make the connection long-lasting?
○ man pages are your friend!
○ type `man iperf` in a Linux terminal

Ping Train
● Goal: Start “ping train” between h1 and h2

○ Pings should occur at 10 per second interval
○ Should run for entire experiment

● How do I specify the ping interval and how
long the ping train runs?

○ man pages are your friend!
○ type `man ping` in a Linux terminal

● Write the RTTs recorded from `ping` to
{args.dir}/ping.txt

○ See starter code comments for more detail

Download Webpage with curl
● Starter code spawns webserver on h1

● Goal: Use `curl` to measure fetch time to
download webpage from h1

○ Starter code has hint on formatting curl command
○ Make sure `curl` doesn’t output an error

■ Errors report very small latency

● No need to plot fetch times

Plotting
● Starter code contains scripts for plotting,

`plot_queue.py`, `plot_ping.py`
○ Expects queue occupancy in $dir/q.txt, ping

latency in $dir/ping.txt
○ Plots are useful for debugging!

● Part 3, run same experiments with TCP
BBR instead of TCP Reno

○ How do you expect the graph outputs to differ?

Q = 20

Q = 100

Note
- Sudo mn -c to restart mininet
- Run CLI() in python to enter an interactive shell. This will be useful

for debugging/ testing commands to run in h1/h2.
- This is a common mistake in previous quarters! Make sure that your

curl command is able to fetch the webpage and receives a valid
response from the server before you use its time measurement

Deliverables
- A zip file of

- Final Code
- README
- 8 Plots

Review of BGP

How to figure out what path to take?
● With some hand-waving, we can figure the path based on vibes

○ Usually, the graphs you’ll see on quizzes and exams are small enough to intuitively figure out the
BGP path

● But vibes is not good enough!!
○ How does BGP systematically figure out the path?

● Key technique: path advertisements!
○ For a given destination, an AS will advertise to each of its neighbors exactly ONE path to the

destination that includes that AS as a hop along the route
■ Note: the path advertised to two different neighbors may be different (and it is entirely

possible that an AS does not advertise a path to a neighbor)

Advertisements are cool, but how do I use them?
● In most BGP questions, you will not need to find the route from every src to every

dst – usually just examining a path between two ASes
● In practice, path advertisements are in the opposite direction of the data flow
● So, WORK BACKWARDS!

○ Start at the destination – destination will advertise to any neighbor, it is fine with paying a cost to
get messages from the source

○ Then, look at destination’s neighbors
■ The neighbor will add themselves to the path, and choose to advertise to its neighbors – note

that if the destination was a provider of this neighbor, then this neighbor AS will not
advertise the path to any of its provider neighbors!

○ Look at the next set of neighbors
■ At this point, may need to aggregate different advertisements that have been heard by this AS

and decide best one to advertise further – hint: look at the relationship between this AS and
the neighbors it has heard from

An example… 1

2 3 4

11

13
5 6

7

12

8

9 10

